Water Security is National Security

Water resources and how they are managed impact almost all aspects of society and the economy, in particular health, food production and security, domestic water supply and sanitation, energy, industry, and the functioning of ecosystems. Under present climate variability, water stress is already high, particularly in many developing countries, and climate change adds even more urgency for action. Without improved water resources management, the progress towards poverty reduction targets, the Millennium Development Goals, and sustainable development in all its economic, social and environ- mental dimensions, will be jeopardized. UN Water.Org

Saturday, May 9, 2015

Dry Heat

Last week, Lake Mead, which sits on the border of Nevada and Arizona, set a new record low—the first time since the construction of the Hoover Dam in the 1930s that the lake’s surface has dipped below 1,080 feet above sea level.

The West’s drought is so bad that official plans for water rationing have now begun—with Arizona’s farmers first on the chopping block. Yes, despite the drought’s epicenter in California, it’s Arizona that will bear the brunt of the West’s epic dry spell.

The huge Lake Mead—which used to be the nation’s largest reservoir—serves as the main water storage facility on the Colorado River. Amid one of the worst droughts in millennia, record lows at Lake Mead are becoming an annual event—last year’s low was 7 feet higher than this year’s expected June nadir, 1,073 feet.

If, come Jan. 1, Lake Mead’s level is below 1,075 feet, the U.S. Bureau of Reclamation, which manages the river, will declare an official shortage for the first time ever—setting into motion a series of already agreed-upon mandatory cuts in water outlays, primarily to Arizona. (Nevada and Mexico will also receive smaller cuts.) The latest forecasts give a 33 percent chance of this happening. There’s a greater than 75 percent chance of the same scenario on Jan. 1, 2017. Barring a sudden unexpected end to the drought, official shortage conditions are likely for the indefinite future.

Why Arizona? In exchange for agreeing to be the first in line for rationing when a shortage occurs, Arizona was permitted in the 1960s to build the Central Arizona Project, which diverts Colorado River water 336 miles over 3,000 feet of mountain ranges all the way to Tucson. It’s the longest and costliest aqueduct in American history, and Arizona couldn’t exist in its modern state without it. Now that a shortage is imminent, another fundamental change in the status quo is on the way. As in California, the current drought may take a considerable and lasting toll on Arizona, especially for the state’s farmers.

“We need to stop growing alfalfa in the deserts in the summertime.”

Robert Glennon, water policy expert at the University of Arizona

“A call on the river will be significant,” Joe Sigg, director of government relations for Arizona Farm Bureau, told the Arizona Daily Star. “It will be a complete change in a farmer’s business model.” A “call” refers to the mandatory cutbacks in water deliveries for certain low-priority users of the Colorado. Arizona law prioritizes cities, industry, and tribal interests above agriculture, so farmers will see the biggest cuts. And those who are lucky enough to keep their water will pay more for it.

According to Robert Glennon, a water policy expert at the University of Arizona, the current situation was inevitable. “It’s really no surprise that this day was coming, for the simple reason that the Colorado River is overallocated,” Glennon told me over the phone last week. Glennon explained that the original Colorado River compact of 1922, which governs how seven states and Mexico use the river, was negotiated during “the wettest 10-year period in the last 1,000 years.” That law portioned out about 25 percent more water than regularly flows, so even in “normal” years, big reservoirs like Lake Mead are in a long-term decline. “We’ve been saved from the disaster because Arizona and these other states were not using all their water,” Glennon said.

They are now. Since around 2000, Arizona has been withdrawing its full allotment from the Colorado River, and it’s impossible to overstate how important the Colorado has become to the state. About 40 percent of Arizona’s water comes from the Colorado, and state officials partially attribute a nearly 20-fold increase in the state’s economy over the last 50 years to increased access to the river.

On April 22, Arizona held a public meeting to prepare for an eventual shortage declaration, which could come as soon as this August. The latest rules that govern a shortage, established in 2007 by an agreement among the states, say that Arizona will have to contend with a 20 percent cut in water in 2016 should Lake Mead fall below 1,075 feet, which will decrease the amount available to central Arizona’s farmers by about half. At 1,050 feet, central Arizona’s farmers will take a three-quarters cut in water. At 1,025 feet, agriculture would have to make due largely without water from the Colorado River. That would probably require at least a temporary end to large-scale farming in central Arizona. Below 1,025 feet, the only thing Colorado River states have agreed to so far is a further round of negotiations. In that emergency scenario, no one really knows what might happen. More

 

Thursday, May 7, 2015

This machine makes salty water drinkable

The American engineers who traveled to rural India two years ago believed they were going to help poor villagers get rid of microbes in their drinking water. But soon after their arrival, they began hearing about a different problem: salt.

“People kept talking about the salt in the water,” recalled Natasha Wright, a doctoral candidate who was part of the team from Massachusetts Institute of Technology that made the journey in 2013. “The groundwater beneath the villages was brackish.”

Those complaints inspired new technology that could some day supply water to thirsty villages and drought-stricken farms in other parts of the world. The MIT team developed a solar-powered water desalination system that uses the sun’s energy to turn brackish liquid into contaminant-free water safe for drinking and for crops.

While there are dozens of different desalination systems in use around the world, MIT’s is uniquely designed to be small, relatively cheap and 100-percent solar-powered, making it suitable for remote areas where the electricity supply is unreliable or non-existent, Wright said.

The panel of judges last month deemed the machine’s potential so impressive that they gave the inventors the $140,000 “Desal Prize,” an award sponsored by Securing Water for Food, a joint project of the U.S. Agency for International Development and the governments of Sweden and the Netherlands. Some 68 engineering teams from 29 countries competed in the contest, hosted by the Interior Department’s Bureau of Reclamation in Alamogordo, N.M.

“Providing a sustainable water supply is important for the West, the country and the world,” Esteva Lopez, the department’s reclamation commissioner, said after the top prize was awarded to MIT and its research partner, Jain Irrigation Systems.

Wright said she and fellow engineers from MIT’s Global Engineering and Research Laboratory became aware the extent of saltwater intrusion in northern and central Indian aquifers during visits to investigate solutions for widespread water contamination in India. In addition to problems with bacterial contamination, the groundwater in much of rural India is brackish, having a salt content lower than seawater but still high enough to cause problems. In some of the villages visited by the MIT researchers, locals were trying unsuccessfully to remove the salt using filters and chemicals.

“People complained about the salty taste,” Wright said, “and the salt ruined their cooking pots.”

Traditional desalination systems are expensive and require substantial amounts of electricity to operate, making them impractical for India’s remote farming communities. Instead, the MIT researchers designed a system that removes salt through a process called electrodialysis, using a series of electrodes and membranes to remove the salt. They added solar panels and batteries to run the pumps and charge the electrodes. Then, in a final step, they installed ultraviolet light arrays to kill any microbes remaining in the water.

The finished prototype is small enough to fit in a tractor-trailer and includes photovoltaic cells to supply the electricity. The system, when fully operational, can supply the basic water needs of a village of between 2,000 and 5,000 people, MIT officials said. Although the prototype was more expensive, Wright said the team is hopes to lower the costs of a village-sized unit to about $11,000.

Such a lower-power system is useful mainly for treating brackish water and not seawater, which contains far more salt. But the prototype now being tested could handle water that contains salt concentrations of up to 4,000 parts per million, meaning it would work in about 90 percent of India’s wells, Wright said. Seawater’s salt concentration averages about 35,000 parts per million.

“There are places where this kind of system won’t work, but the advantage is, it uses half the energy of other systems,” said Wright. And, thanks to solar cells, “you can be fully off the grid.” More

 

Saturday, April 18, 2015

Engineers purify sea and wastewater in 2.5 minutes

A group of engineers have created technology to recover and purify, either seawater or wastewater from households, hotels, hospitals, commercial and industrial facilities, regardless of the content of pollutants and microorganisms in, incredibly, just 2.5 minutes, experts say.

A group of Mexican engineers from the Jhostoblak Corporate created technology to recover and purify, either seawater or wastewater from households, hotels, hospitals, commercial and industrial facilities, regardless of the content of pollutants and microorganisms in, incredibly, just 2.5 minutes, researchers say.

The System PQUA, works with a mixture of dissociating elements, capable of separating and removing all contaminants, as well as organic and inorganic pollutants. “The methodology is founded on molecularly dissociating water pollutants to recover the minerals necessary and sufficient in order for the human body to function properly nourished,” technical staff explained.

Notably, the engineers developed eight dissociating elements, and after extensive testing on different types of contaminated water, implemented a unique methodology that indicates what and how much of each element should be combined.

“During the purification process no gases, odors nor toxic elements that may damage or alter the environment, human health or quality of life are generated,” said the Mexican firm.

The corporation has a pilot plant in their offices that was used to demonstrate the purification process, which uses gravity to save energy. We observed that the residual water in the container was pumped to reactor tank, where it received a dosing of the dissociating elements in predetermined amounts.

In this phase solid, organic and inorganic matter as well as heavy metals are removed by precipitation and gravity; and a sludge settles at the bottom of the reactor. The latter is removed and examined to determine if it is suitable to use as fertilizer or manufacture construction materials.

Subsequently, the water is conducted to a clarifier tank, to sediment the excess charge of dissolved elements; then the liquid reaches a filter to remove turbidity and is finally passed by polishing tank that eliminates odors, colors and flavors. The treated water is transported to a container where ozone is added to ensure its purity, and finally is ready to drink. Indeed, the resulting liquid is fresh, odorless and has a neutral taste.

“We have done over 50 tests on different types of wastewater and all have been certified and authorized by the laboratories of the Mexican Accreditation Agency (EMA). Also, the Monterrey Institute of Technology and Higher Education (ITESM), the College of Mexico and the National Polytechnic Institute (IPN) have given their validation that the water treated with our technology meets the SSA NOM 127 standard, which indicates the parameters and quality characteristics for vital liquid to be used for human consumption,” says the Corporate Jhostoblak.

Moreover, they report that this development is protected under trade secret in America and soon will get the same record in Switzerland. Its implementation in the market will depend on the needs of users and the issue of new laws regarding use, consumption and water discharge. More

 

Monday, March 23, 2015

Egypt, Ethiopia and Sudan sign accord on Nile dam

Egypt, Ethiopia and Sudan have agreed on a preliminary deal on a controversial dam project that Cairo feared would reduce its share of vital waters from the Nile river.

The leaders of Egypt, Ethiopia and Sudan all gathered in Khartoum on Monday to sign the agreement of principles on Ethiopia’s Grand Renaissance Dam project.

"I confirm the construction of the Renaissance Dam will not cause any damage to our three states and especially to the Egyptian people," Ethiopian Prime Minister Hailemariam Desalegn said at the signing ceremony.

We have chosen cooperation, and to trust one another for the sake of development.

We have chosen cooperation, and to trust one another for the sake of development. Abdel Fattah el-Sisi, Egypt's President

Egypt, heavily reliant on the Nile for agriculture and drinking water, feared that the dam would decrease its water supply.

Egypt’s President Abdel Fattah el-Sisi said that "this is a framework agreement and it will be completed".

"We have chosen cooperation, and to trust one another for the sake of development."

Sisi said the final accord will "achieve benefits and development for Ethiopia without harming Egypt and Sudan’s interests".

Sudan’s President Omar al-Bashir hailed the deal as "historic".

The agreement is made up of 10 principles, Egypt’s Water Resources Minister Hussam al-Maghazi told the AFP news agency.

The countries agreed on the "fair use of waters and not to damage the interests of other states by using the waters".

They also agreed to establish "a mechanism for solving disputes as they occur", Maghazi said.

He gave no details as to when the final agreement would be signed.

Sudan’s deputy water resources minister, Saif al-Din Hamed, said the signing of the agreement "will not stop the current construction and building" of the dam in Ethiopia.

Ethiopia began diverting the Blue Nile in May 2013 to build the 6,000 MW dam, which will be Africa’s largest when completed in 2017.

Ethiopian officials have said the project to construct the 1,780-metre-long and 145-metre high dam will cost more than $4bn. More

 

 

Monday, March 9, 2015

Police will “guard” the water for those who can pay for it, while we die of thirst."

So says a protester walking though the streets of Sao Paul as water service is being drastically cut due to a relentless drought in Brazils most populous state. The 20 million people that live in Sao Paulo, Brazil have run out of water and things are starting to get ugly really fast.

Secretly recorded, Paulo Massato, the metropolitan director of the São Paulo state-run water utility, said that people might have to flee the city. "There's not enough water, there won't be water to bathe, to clean," says Massato. Fears of what comes next has begun and thousands took to the streets recently walking from the poor neighborhoods and marching past wealthy residential towers most of which have their own water tanks, to the Bandeirantes Palace in Morumbi, where the official residence of the governor (State of Sao Paolo Geraldo Alckmin) is located.

A demonstrator holds up a bucket with a sign reading "Water, Yes," in reference to water rationing in Sao Paulo January 29, 2015. Residents of Brazil's largest city, Sao Paulo, could soon only have running water two days a week. (REUTERS/Nacho Doce)

São Paulo, along with 93 smaller localities around Brazil, is facing drastic water shortages that could mean up to five days a week without running water starting in April. The mega-city’s largest reservoir, which supplies about 30 percent of the 20 million people living in the metropolitan region, is currently at only 5.1 percent of its capacity. It’s all the result of a severe drought that has extended throughout Brazil’s Southeastern region, and could soon lead to water rationing for as much as 40 percent of the population.

Aside from practical residential concerns, the shortage has affected industry and agriculture across the region, including the production of hydroelectricity, a key component of Brazil’s power grid. Even the carnaval is threatened—celebrations have been cancelled in some dry municipalities and the Río samba groups are altering their choreography to eliminate traditionally prominent water us.

The latest must-have item in the city is a rainwater cistern. A local group created in October, Cisterna Já, teaches city residents how to make their own mini-cisterns, allowing them to cut back on increasingly expensive and scarce public water supplies.

Consumption in the metropolitan region has already been reduced by a quarter, according to the president of Sabesp, the city’s water utility. Yet the main water loss culprit isn’t long showers, but rather leaky pipes. In order to address the problem, he explained in a recent op-ed, about 64,000 kilometers of buried pipes would have to be replaced.

Experts say they are concerned there is little practical preparation for upcoming shortages and argue that few relevant policy measures are being put into place.

The roots of the water shortage can be traced back to deforestation and industrialization across the region, according to Marcos Sorrentino, a professor of education and environmental policy at the University of São Paulo. A lack of political will to address the problem has led São Paulo to maintain a system of wasteful water distribution and consumption, and the city has missed opportunities to implement water saving and reuse technologies, Sorrentino says.

Residential water use only accounts for an estimated 6 percent of water usage in the region, which means that even if Paulistas stopped bathing altogether they won’t be able to resolve the “crisis de agua,” as it’s called locally. “Agriculture and industry, the biggest consumers, are only now being mobilized to commit to reducing consumption,” says Sorrentino.

A recent study found that 95 percent of businesses, industries, hospitals and hotels in the state of São Paulo don’t have a water supply contingency plan. “Lack of water will certainly compromise the operations of places that depend on the public water system,” says Rodnei Domingues, the study’s coordinator.

Sorrentino is particularly concerned about the drought’s impact on food prices, and notes that there have already been several water shortage-related protests. “The discontent of the population of the cities in which rationing has started is very large and it is not difficult to predict effects on public health and the expansion of urban violence,” he says.

The drought began last austral summer (December to February), when São Paulo state received about one-third to half of its usual amount of rain during what should have been its wettest season. In the seven months since, rainfall has been about 40 percent of normal. Across southeastern Brazil, production of key crops like coffee and sugar are in steep decline, and citizens are facing periodic outages in the water supply—even as news agencies report that local water authorities have not instituted conservation measures.

“The climate of the region is seasonal, with a rainy summer and a dry winter, and the drought has extended through the current dry season and the past rainy season,” noted Marcos Heil Costa, climate scientist at the Universidade Federal de Viçosa. “To make things worse, the onset of the rainy season—which usually happens in late September or early October—has not happened yet.”

“For the last rainy season, the pattern [of reduced rainfall] has been observed in the past, though the intensity was unprecedented this year,” Costa added. “For the dry season, coincidence or not, it looks exactly like what has been predicted by IPCC for a warmer climate. And it is now clear that our policies on management of water resources are unsustainable. No city in southeast Brazil seems prepared to handle a drought like this one. It is a mix of a lack of preparation for low levels of rain and a lack of environmental education in the population. Most people continue to use water as if we were in a normal year.” More

 

Friday, March 6, 2015

Water for Life Voices' Exhibition in UN Headquarters to highlight progress during the Water Decade

Water for Life Voices' Exhibition in UN Headquarters to highlight progress during the Water Decade

Date: 9 March to 14 April 2015 - Place: UN Headquarters, New York, United States

Organiser: UN-Water Decade Programmeon Advocacy and Communication (UNW-DPAC)

Achieving the Water for Life Decade’s goals has needed sustained commitment, engagement, cooperation and investment from all. As the Decade is officially drawing to a close in 2015, the UN-Water Decade Programme on Advocacy and Communication (UNW-DPAC)wants to show how people’s efforts have contributed to its success. To this end, the Water for Life Voices campaign has gathered the voices of those whose life has changed over the last 10 years due to water and sanitation. Selected contributions from the campaign will form the exhibition at the UN Headquarters from 9 March to 14 April 2015. It is hoped that the exhibition will bring the voices of beneficiaries of water programmes over the Decade and highlight the human aspect of water programmes, and thus help support the inclusion of such considerations into the Sustainable Development Goals (SDG). As Josefina Maestu, Director of the Office to support the Water for Life Decade, explains: "This exhibit brings the lives and voices of the beneficiaries of water programmes right into the halls of the UN General Assembly. It serves as a reminder to the UN’s top decision makers of just how much impact their work has had on people over the last Decade. It should also show visitors how much has been done, and how much there is yet to do to ensure continued development and progress for all the world’s peoples."

>> Access the Water for Life Voices website!

>> More on the Water for Life Voices campaign

 

 

Tuesday, March 3, 2015

Climate change key in Syrian conflict – and it will trigger more war in future

Climate change was a key driver of the Syrian uprising, according to research which warns that global warming is likely to unleash more wars in the coming decades, with Eastern Mediterranean countries such as Jordan and Lebanon particularly at risk.

Experts have long predicted that climate change will be a major source of conflict as drought and rising temperatures hurt agriculture, putting a further strain on resources in already unstable regimes.

But the Syria conflict is the first war that scientists have explicitly linked to climate change. Researchers say that global warming intensified the region’s worst-ever drought, pushing the country into civil war by destroying agriculture and forcing an exodus to cities already straining from poverty, an influx of refugees from war-torn Iraq next door and poor government, the report finds.

“Added to all the other stressors, climate change helped kick things over the threshold into open conflict,” said report co-author Richard Seager, of Columbia University in New York.

“I think this is scary and it’s only just beginning. It’s going to continue through the current century as part of the general drying of the Eastern Mediterranean – I don’t see how things are going to survive there,” Professor Seager added.

Turkey, Lebananon, Israel, Jordan, Iraq and Afghanistan are among those most at risk from drought because of the intensity of the drying and the history of conflict in the region, he says. Israel is much better equipped to withstand climate change than its neighbours because it is wealthy, politically stable and imports much of its food. Drought-ravaged East African countries such as Somalia and Sudan are also vulnerable along with parts of Central America – especially Mexico, which is afflicted by crime, is politically unstable, short of water and reliant on agriculture, Prof Seager said.

The conflict in Syria began in spring 2011 and has evolved into a complex multinational war that has killed at least 200,000 people and displaced millions more, according to the Columbia study, which appears in the journal Proceedings of the National Academy of Sciences. It was preceded by a record drought that ravaged Syria between 2006 and 2010.The paper says the timing is unlikely to be a coincidence, citing a recent interview with a 38-year old farmer in Mohasen, an agricultural village in the north east of Syria.

Asked if the conflict was about the drought, Faten – a female farmer who did not want to give her last name – said: “Of course. The drought and unemployment were important in pushing people towards revolution. When the drought happened, we could handle it for two years, and then we said, ‘It’s enough’,” the report said.

The study combined climate, social and economic data relating to the so-called Fertile Crescent, spanning parts of Turkey and much of Syria and Iraq, where agriculture and herding are thought to have started 12,000 years ago and continue to be crucial.

The region has warmed by between 1 and 1.2C since 1900, reducing rainfall in the wet season by an average of 10 per cent. In addition to the warming – which has found to be caused by human greenhouse gas emissions – Syria has had to contend with rapid population growth, from 4 million in the 1950s to 22 million now.

The ruling al-Assad family encouraged water-intensive export crops such as cotton, while illegal drilling of irrigation wells dramatically depleted groundwater that might have provided valuable reserves, the report said. The drought’s effects were immediate. Agriculture production, which typically makes up a quarter of Syria’s economy, plummeted by a third.

In the hard-hit northeast, livestock herds were practically obliterated, cereal prices doubled and nutrition-related diseases among children increased dramatically. As many as 1.5m people fled from the country to the city.

“Whether it was a primary or substantial factor is impossible to know, but drought can lead to devastating consequences when coupled with pre-existing acute vulnerability,” said lead author Colin Kelley, who did the work at Columbia but is now the University of California, Santa Barbara.

The pressure exerted by climate change is even more dangerous because it comes against a backdrop of rising populations and growing scarcity of resources, experts say.

With demand for basic commodities such as wheat and copper set to soar over the next two decades, relatively small shocks to supply risk causing sudden price rises and triggering “overreactions or even militarised responses”, the Chatham House think-tank has warned.

Furthermore, while the effects of rising population and global warming may be felt hardest among the poorer countries most affected by climate change, the impact will be felt worldwide.

Global trade is so interconnected that no importer of resources is insulated from the problems of key exporters – a fact of concern to the UK, which imports 40 per cent of its food and a high proportion of fossil fuels and metals, the think-tank warns. More